The Carbon Footprint of Surgical Operations Peter Robinson, 190049012, Medicine, p.n.robinson2@newcastle.ac.uk, 2022

1. Definitions

- Carbon footprint: the greenhouse gas emissions associated with a product, activity, or system expressed as carbon dioxide equivalents (CO_2e)
- Carbon hotspot: a specific activity attributable to a large proportion of the carbon footprint

2. Background

Why is the carbon footprint of surgical operations important?

- The healthcare sector accounts for 4-5% of global greenhouse gas emissions
- The NHS produces 25% of all UK public sector greenhouse gases
- Almost two thirds of NHS emissions relate to medicines, medical equipment, and supply chains
- Operating theatres are up to six times more energy-intensive than the rest of the hospital and are a major source of waste
- Reducing emissions produced by surgical operations first requires the evaluation of the carbon footprint to identify carbon hotspots

3. Objectives

- Update Rizan et al. (2020) 'The carbon footprint of surgical operations a systematic review'⁽¹⁾
- Identify carbon hotspots within surgery
- Identify recommendations that can reduce the greenhouse gas emissions associated with surgery

4. Methods

Selection of studies

Table 1. Data from included studies					
*	Study	Surgery Type	Carbon Footprint (carbon dioxide equivalents (KgCO ₂ e))	Equivalent Destination	Equivalent Distance by car (miles)
1	Boberg <i>et al</i> . 2022 ⁽²⁾	Laparoscopic cholecystectomy	0.79	Newcastle Airport	4.41
2	Misrai <i>et al</i> . 2021 ⁽³⁾	Prostate surgery	1.24	Ponteland	6.90
3	Jabouri <i>et al</i> . 2022 ⁽⁴⁾	Skin surgery	1.28	Tynemouth	7.10
4	Moussa <i>et al</i> . 2022 ⁽⁵⁾	Retinal detachment	2.60	Durham	14.44
5	Rizan <i>et al</i> . 2022 ⁽⁶⁾	Laparoscopic cholecystectomy	4.48	Hartlepool	24.86
6	Tan <i>et al</i> . 2021 ⁽⁷⁾	Skin cancer surgery	50.32	Gatwick Airport	279.56
7	Ferrero <i>et al</i> . 2021 ⁽⁸⁾	Cataract surgery	81.13	Paris	450.72
8	Grinberg <i>et al</i> . 2021 ⁽⁹⁾	Heart surgery	124.30	Geneva	690.56
9	Latta et al. 2021 ⁽¹⁰⁾	Cataract surgery	151.90	Pyrenees	843.89
10	Hubert <i>et al</i> . 2022 ⁽¹¹⁾	Coronary artery bypass surgery	505.10	Corfu (return)	2806.11

5. Results

- [Table 1.]
- [Figure 1.]

6. Recommendations

Reducing emissions of medical supplies

waste

Reducing emission from transport of staff and patients

- Partnerships with local governments to subsidise public transport
- Facilities for safer cycling and walking
- Staff car-pooling schemes

Increasing oversight

- Integrating the assessment of the carbon footprint of healthcare services into service evaluations and quality improvements
- Providing the carbon footprint of medical products at the time of regulatory approval and certification
- Standardising carbon footprint calculations so that operations can be compared between different hospitals

7. Conclusions

- There is variation in the carbon footprints of surgical operations
- Differences in the methods for calculating the carbon footprint makes direct comparison of studies challenging
- Future research should focus on
- Improving the design of reusable equipment
- Comparing the carbon footprint of the sterilisation of reusable equipment versus using disposable equipment
- Comparing patient outcomes with reusable instruments versus single-use instruments

8. References

- Rizan et al. Ann Surg. 2020;272:986-995 Boberg et al. PLoS One. 2022;17:e0271601
- Misrai et al. Ann Surg Open. 2021;2:094
- Jabouri et al. Br J Dermatol. 2022;186:735-736
- Moussa et al. PLoS One. 2022:17:e0263009
- Rizan et al. Surg Endosc. 2022;36:4067-4078

Newcastle University

The carbon footprint of a single operation ranged from 0.79-505.10 KgCO₂e

KgCO₂e values have been converted into equivalent miles driven by car

Coronary artery bypass surgery had the largest calculated carbon footprint which is equivalent to a return trip to Corfu by car

Major carbon hotspots identified were manufacturing and procurement of medical supplies and transport of staff and patients

Three studies^(2,4,6) compared single-use versus reusable instruments. All found reusable items to have a lower carbon footprint. The average reduction in emissions across the studies was 65%

Forming sustainable supply chains by utilising local manufactures, partnerships with suppliers, switching to reusable instruments, and reducing

- 7. Tan et al. Australas J Dermatol. 2021;62:e170-e177
- 8. Ferrero et al. J Fr Ophtalmol. 2022;45:57-64
- 9. Grinberg et al. Eur J Cardiothorac Surg. 2021;60:1325-1331
- 10. Latta et al. N Z Med J. 2021;134:13-21
- 11. Hubert et al. J Clin Anesth. 2022;80:110850